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Outline

Where are we (jet theory) right now

Where do we want to be by the start of
S-PHENIX

What can we learn from S-PHENIX

What needs to happen for theory to succeed by
the time S-PHENIX turns on
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Concept captured by S-PHENIX & QCD white paper
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At high resolution,
transport coefficients for near on-shell partons

p; ~ E* —p? pT ~p3 /2p

>L Transverse momentum
diffusion rate

<AE > L Elastic energy loss rate
I also diffusion rate e;

By definition, describe how the medium modifies the jet parton!



In general, 2 kinds of transport coefficients
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In general, 2 kinds of transport coefficients

Type |:which quantify how the medium changes the jet
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There are observables that are only
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In all calculations (unless stated otherwise)

bulk medium described by viscous fluid dynamics

D=4 1M

Medium evolves hydro-dynamically as the jet moves through it
Fit the G for the initial T in the hydro in central coll.
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A problem with the extracted coefficient

* Analysis done by the JET collaboration in multiple models

* Interaction strength at LHC weaker than at RHIC.

wse—s MARTINI _ McGill-AMY
== GLV-CUJET

0.2 0.3 04 0.5
T (GeV)

K. Burke et al.



Scaled behavior

what you may think this means!




Definition of q : in a thermal bath
A 4772043 dy_dQ?JJ_ 21 v ki_ g~ ik -yl
— & 29

! N, (27)2 -
6_6En . B
(| ——F" 1y )F(0)[n)

~ _ k2
q(q",q7) 207" = Q% go= =Pt

a depends on the energy and virtuality of the
hard parton!
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v2 at LHC without a bump in g/T
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v2 at RHIC without a bump in G/T3
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Near side and away side correlations

A. Majumder, et. al., nucl-th/0412061
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A wide range of single particle observables can be explained
by a weak coupling formalism
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Moving from event averaged (analytic) to MCs

Note: There are several issues with MC codes
these will be resolved over the next several years

Even then there will be a role for event averaged non-
simulators.

These can be used to often integrate out unknown
(unwanted) physics issues

However, sophisticated MC simulators will become the
tool of choice in analyzing jet data in the 2020’s
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Low virtuality, high energy part

Scattering dominated regime
Few, time separated emissions

Q=qT —_—
T: lifetime of a parton

Theory: BDMPS,AMY
MC:  MARTINI* JEWEL*
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Low virtuality low energy part

* Many of these partons are absorbed by the medium
* Cannot be described by pQCD

» Modeled ! (LBNL-CCNU, YaJEM, MARTINI,
JEWEL)

* Scale of parton same as scale of medium

* AdS/CFT

P. Chesler, W. Horowitz
J. Casalderrey-Solana, G. Milhano, D. Pablos, K. Rajagopal
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Grand picture:
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T'ype II transport coefficients

* Should be calculable directly in AdS/CFT.

* or any phenomenological model of the medium
e.g., MARTINI, CCNU-LBNL, JEWEL

* Will be greatly enhanced by perturbative splits

* Directly connected to thermalization of energy in medium

Collisional Contribution Radiative Contribution
S Y -'—--.._477”‘

)

B. Neufeld & B. Muller,
G-Y.Qin, AM, H. Song and U. Heinz
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Hadronization: still not resolved,
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Heavy-quarks and more issues

* Heavy quarks have a whole new phase, due to the dead
cone effect

* A ""Gunion-Bertsch” phase with scattering and emission in
tandem

» Also due to mass, depend on a different range of x from the

QGP-PDF

47TZCR(I dy_ P e
j = ‘ A|F T (y7)F+1(0)|A) e*aFP"Y
i= Tt | o AIES ) FE O)4) e AP




Summary

Jets are a window to both static and dynamic properties of the QGP
These are revealed through type 1 and type 2 transport coefficients
The effect of Type 2 depends on the magnitude of type 1

Hadronization in the presence of a medium complicates all
phenomena

S-PHENIX will allow for wide range of kinematics at lower
temperatures close to the phase transition

In order to extract the maximal amount of information from S-
PHENIX and LHC program, next gen. MCs need to be in place.



On becoming a regular source term,
effects can be calculated by hydro

STH —>

The energy deposited over a region is known
Width of energy distribution at time Ot after parton=0we

OW,

o0t

Can go beyond this with skewness and kurtosis etc.
Also need vectorial coefficients for momentum

A dimensionless coefficient W =



q is a lot more than just a number

X

M= [ dagd(@(@)(

: » W(k)

in terms of W, we get q = Zkl ;
k




Energy deposition-thermalization

Strong coupling, Energy thermalization

AdS-CFT / Y. - -

Strong coupling, N e mmeo.
AdS-CFT Energy thermalization



